Chapter 1: An Introduction to the Arctic Climate Impact Assessment

Lead Authors: Henry P. Huntington and Gunter Weller

Contributing Authors: Terry V. Callaghan, Elizabeth Bush, Vladimir Kattsov, and Mark Nuttall

1.0 Introduction

1.1 Why Assess the Impacts of Changes in Climate and UV Radiation in the Arctic?
 1.1.1 Climate Change
 1.1.2 UV Radiation
 1.1.3 Origins of the Assessment

1.2 How the Assessment Was Conducted
 1.2.1 Organization
 1.2.2 The Nature of Science Assessment
 1.2.3 Concepts and Tools in Climate Assessments
 1.2.4 Approaches for Assessing Impacts of Climate and UV

1.3 The Arctic: Geography, Climate, Ecology, People, Economy
 1.3.1 Geography
 1.3.2 Climate
 1.3.3 Ecology
 1.3.4 Humans
 1.3.5 Natural Resources and Economics

1.4 An Outline of the Assessment

1.5 References
Chapter 2: Arctic Climate System and its Global Role

Lead Author: G.A. McBean

2.0 Introduction

2.1 The Arctic Atmosphere and its Variability
 2.1.1 Climatology
 2.1.2 Variability Modes
 2.1.2.1 The Arctic/North Atlantic Oscillation
 2.1.2.2 The Pacific Decadal Oscillation

2.2 The Marine Arctic and Sea Ice
 2.2.1 Description of the marine Arctic
 2.2.2 Freshwater influence from the Pacific Ocean
 2.2.3 Freshwater from other sources
 2.2.4 Influence from the Atlantic Ocean
 2.2.5 The Arctic Ocean
 2.2.5.1 Circulation
 2.2.5.2 Vertical layering of the ocean (Atlantic & Pacific assemblages)
 2.2.6 Sea-ice
 2.2.6.1 Development
 2.2.6.2 Extent
 2.2.6.3 Circulation of pack ice
 2.2.6.4 Land-fast ice

2.3 Terrestrial Water Balance
 2.3.1 Permanent Storage of Water on Landscape
 2.3.2 Hydrology of Freshwater in the Arctic
 2.3.3 Active Layer and Permafrost

2.4 20th Century Arctic Climate Variability – The Instrumental Record
 2.4.1 Observing Systems and Data Sources
 2.4.1.1 Sources of the data, major data compilations
 2.4.1.2 Atmospheric Changes
 2.4.1.2.1 Surface air temperature
 2.4.1.2.2 Precipitation
 2.4.1.2.3 Extremes in precipitation and temperature
 2.4.1.2.4 Changes in other temperature and precipitation-derived variables
 2.4.1.2.5 Shifts in pattern of temperature and precipitation fields north of 55°N during the past decades (1986-1995 versus 1976-1985)
 2.4.1.2.6 Evaporation and Precipitation minus Evaporation (P-E)
 2.4.1.2.7 Cloudiness
 2.4.1.2.8 Upper-air temperatures and stratification
 2.4.1.3 Oceanic Changes
 2.4.1.3.1 Sea Ice
 2.4.1.3.2 Ocean
2.4.1.4 Terrestrial Changes
 2.4.1.4.1 Snow Cover
 2.4.1.4.2 Permafrost and glaciers
 2.4.1.4.3 River regime
2.4.2 Discussion
 2.4.2.1 Internal consistency of the contemporary changes in the high latitudes
 2.4.2.2 Our ability to link contemporary climate variations with those in hydrology, oceanography and ecology

2.5 Arctic Climate Variability up to 100 years Before Present
2.5.1 Introduction
2.5.2 Pre-Quaternary Climate Variability
2.5.3 Quaternary Period Climate Variability
 2.5.3.1 Last Interglacial –The Eemian
 2.5.3.2 Last Glaciation: Wisconsinan/Weichselian
 2.5.3.3 Bølling/Allerød Interstadial: 14.5 ky BP
 2.5.3.4 Younger Dryas Interstadial:
 2.5.3.5 Early Holocene:
 2.5.3.6 Mid Holocene Warm Period:
 2.5.3.7 Medieval Warm Period:
 2.5.3.8 Neoglacial and Little Ice Age:

2.6 The Arctic’s influence on Global Climate
2.6.1 Introduction
2.6.2 Arctic marine influence on the global climate system
 2.6.2.1 Overview
 2.6.2.2 Ice-albedo feedback to warming and cooling
 2.6.2.3 Freshwater feedback to poleward transport of heat and freshwater
2.6.3 Sea level
2.6.4 Arctic greenhouse gas cycles

2.7 Summary and Key Findings

2.8 Annex 2A: Observing Data Systems
2.8.1 Sources of data, major data compilations
2.8.2 Observational base, history and present status
2.8.3 Observing practices and data quality
2.8.4 Temperature
2.8.5 Precipitation
2.8.6 Other Variables
Chapter 3: Atmospheric Ozone and UV Radiation

Lead Authors: Betsy Weatherhead and Petteri Taalas

Contributing Authors: John Austin, Germar Bernhard, Valery Dorokhov, Vitali Fioletov, Jay Herman, Weine Josefsson, Jussi Kaurola, Arve Kylling, Esko Kyro, Drew Shindell, Aapo Tanskanen

Consulting Authors: Antti Arola, Volker Grewe, Rigel Kivi, Nikolay Krotkov, Kaisa Lakkala, Anders Lindfors, David Tarasick

1. Introduction
2. Arctic Ozone
 2.1 Ozone over the polar regions
 2.2 Monitoring Arctic stratospheric ozone
 2.3 Arctic ozone depletion
3. Long-term Changes and Variability in Ozone
 3.1 Global total ozone
 3.2 Total ozone trends
 3.3 Arctic total ozone variations
 3.4 Ozone profiles
 3.5 Factors affecting Arctic ozone variability
 3.5.1 Short-term meteorological variability
 3.5.2 Trace Gases
 3.5.3 The impact of dynamics
4. Factors affecting UV radiation in the Arctic
 4.1 Extraterrestrial solar spectrum
 4.2 Solar zenith angle
 4.3 Clouds
 4.4 Total column Ozone
 4.5 Ground albedo
 4.6 Receptor Orientation
 4.7 Aerosols
 4.8 Altitude
 4.9 Relative importance of factors affecting UV
5. Long-term Changes and Variability of UV radiation
 5.1 UV instrument types and their error budgets
 5.2 Ground-based records
 5.2.1 Comparison of UV levels in the Arctic and Antarctic
 5.2.2 Long-term changes in spectral UV irradiance in the European Arctic
 5.2.3 Long-term changes in spectral UV irradiance in Alaska
 5.2.4 Long-term changes in spectral UV irradiance in Canada
 5.3 Surface UV estimates from Satellite Data
 5.3.1 Introduction
 5.3.2 Improved cloud corrections for UV exposure
 5.3.3 Improvements in satellite estimates of UV
 5.3.4 Trends in satellite estimates of Arctic surface UV
5.4 Modeled estimates based on ancillary data

6. **Future Changes in Ozone**
 6.1 Factors affecting polar ozone
 6.2 Impact of climate change on Arctic ozone recovery
 6.3 Projected changes in ozone amounts

7. **Future Changes in UV**

References
Chapter 4: Future Changes of Climate: Modelling and Scenarios for the Arctic Region

Lead Authors: Vladimir Kattsov and Erland Källén

Contributing Authors: Howard Cattle, Jens Christensen, Helge Drange, Inger Hanssen-Bauer, Tómas Jóhannesen, Igor Karol, Jouni Räisänen, Gunilla Svensson, and Stanislav Vavulin

Consulting Authors: Deliang Chen, Klaus Dethloff, Igor Polyakov, and Annette Rinke

4.0 Introduction

4.1 The Arctic in the context of global climate change
 4.1.1 Introduction
 4.1.2 Ice/snow albedo-temperature feedback, permafrost, ice sheets
 4.1.3 Water vapour, clouds, planetary boundary layer
 4.1.4 Arctic Ocean freshwater budget
 4.1.5 Subpolar ocean convection, with global thermohaline consequences
 4.1.6 Stratospheric changes, including possible linkage to Arctic Oscillation
 4.1.7 Summary

4.2 Global coupled Atmosphere-Ocean General Circulation Models – the principal tools for deriving climate change scenarios
 4.2.1 Introduction
 4.2.2 Equilibrium and transient response experiments
 4.2.3 Initialization and coupling issues
 4.2.4 Atmospheric components of AOGCMs
 4.2.5 Ocean components of AOGCMs
 4.2.6 Land surface components of AOGCMs
 4.2.7 Cryospheric components of AOGCMs
 4.2.8 AOGCMs selected for ACIA
 4.2.9 Summary

4.3 Simulation of the observed Arctic climate with the ACIA AOGCMs
 4.3.1 Introduction
 4.3.2 Observational uncertainties and needs for model validation, reanalyses
 4.3.3 Specifying ACIA climatological baseline
 4.3.4 Surface air temperature
 4.3.5 Precipitation
 4.3.6 Other climatic variables
 4.3.7 Summary

4.4 Arctic climate change scenarios for the 21st century projected by the ACIA AOGCMs
 4.4.1 Introduction
 4.4.2 Emission scenarios
 4.4.3 Changes in surface air temperature
 4.4.4 Changes in precipitation
 4.4.5 Changes in other variables
 4.4.6 Changes in variability
4.4.7 ACIA models in the CMIP2 exercise
4.4.8 Summary

4.5 Regional modelling of the Arctic
4.5.1 Introduction
4.5.2 Regional climate models of the Arctic atmosphere
 4.5.2.1 General
 4.5.2.2 RCM present-day simulations
 4.5.2.3 Time-slice projections from atmospheric RCMs
4.5.3 Regional Arctic Ocean models
4.5.4 Coupled Arctic Regional Climate Models
4.5.5 Summary

4.6 Statistical downscaling: approach and downscaling of AOGCM climate change projections
4.6.1 Introduction
4.6.2 Approach
 4.6.2.1 Predictands
 4.6.2.2 Predictors
 4.6.2.3 Methods
 4.6.2.4 Comparison of statistical downscaling and regional modelling
4.6.3 Statistical downscaling of AOGCM climate change projections in the Arctic
 4.6.3.1 General
 4.6.3.2 RegClim
 4.6.3.3 SweClim
 4.6.3.4 Other studies
4.6.4 Summary

4.7 Outlook for improving climate change projections for the Arctic
4.7.1 Introduction
4.7.2 Arctic climate system – a key focus in developing AOGCMs
4.7.3 Improved resolution of Arctic processes
4.7.4 Better representation of stratosphere in GCMs
4.7.5 Coupling chemical components to GCMs
4.7.6 Ensemble simulations
4.7.7 Summary
Chapter 5: Cryospheric and Hydrologic Variability

Consulting Editor: David Atkinson

5.0 Introduction

5.1 Precipitation and evapotranspiration (J. Walsh, M. Serreze)
 5.1.A Background
 5.1.B Key processes affecting change and feedbacks
 5.1.C Recent and ongoing changes
 5.1.D Projected changes
 5.1.E Impacts of projected changes
 5.1.F Critical research needs

5.2 Sea ice (J. Walsh, T. Jakobsson)
 5.2.A Background
 5.2.B Key processes affecting change and feedbacks
 5.2.C Recent and ongoing changes
 5.2.D Projected changes
 5.2.E Impacts of projected changes
 5.2.F Critical research needs

5.3 Snow cover (J. Walsh)
 5.3.A Background
 5.3.B Key processes affecting change and feedbacks
 5.3.C Recent and ongoing changes
 5.3.D Projected changes
 5.3.E Impacts of projected changes
 5.3.F Critical research needs

5.4 Glaciers and ice sheets (J. Oerlemans, J. Ove Hagen)
 5.4.A Background
 5.4.B Key processes affecting change and feedbacks
 5.4.B.1 Mass budget
 5.4.B.2 Role of glacier dynamics
 5.4.C Recent and ongoing changes
 5.4.D Projected changes
 5.4.E Impacts of projected changes
 5.4.F Critical research needs

5.5 Permafrost
5.5(1) Terrestrial permafrost (V. Romanovsky, O. Anisimov)
 5.5(1).A Background
 5.5(1).B Key processes affecting change and feedbacks
 5.5(1).C Recent and ongoing changes
 5.5(1).D Projected changes
 5.5(1).E Impacts of projected changes
 5.5(1).F Critical research needs
5.5(2) Coastal and subsea permafrost (S. Solomon)
 5.5(2).A Background
 5.5(2).B Key processes affecting change and feedbacks
 5.5(2).C Recent and ongoing changes
 5.5(2).D Projected changes
 5.5(2).E Impacts of projected changes
 5.5(2).F Critical research needs

5.6 River and lake ice (T. Prowse)
 5.6.A Background
 5.6.B Key processes affecting change and feedbacks
 5.6.C Recent and ongoing changes
 5.6.D Projected changes
 5.6.E Impacts of projected changes
 5.6.F Critical research needs

5.7 Freshwater discharge (A. Shiklomanov, N. Savelieva, I. Shiklomanov)
 5.7.A Background
 5.7.B Key processes affecting change and feedbacks
 5.7.C Recent and ongoing changes
 5.7.D Projected changes
 5.7.E Impacts of projected changes
 5.7.F Critical research needs

5.8 Sea level rise and coastal stability (S. Solomon)
 5.8.A Background
 5.8.B Key processes affecting change and feedbacks
 5.8.C Recent and ongoing changes
 5.8.D Projected changes
 5.8.E Impacts of projected changes
 5.8.F Critical research needs

Figure Captions
Chapter 6: Arctic Tundra and Polar Desert Ecosystems

Lead Author: Terry Callaghan

Contributing Authors: Lars Olof Björn, Terry Callaghan, Yuri Chernov, Terry Chapin, Torben Christensen, Brian Huntley, Rolf Ims, Dyanna Jolly, Nadya Matveyeva, Nicolai Panikov, Walter Oechel, Gus Shaver.

Consulting Authors: Josef Elster, Heikki Henttonen, Margareta Johansson, Sven Jonasson, Ingibjörg S. Jónsdóttir, Kari Laine, Sibyll Schaphoff, Stephen Sitch, Kari Taulavuori, Érja Taulavuori, Christoph Zöckler

Research Assistant: Margareta Johansson

Summary

1. Introduction
 1.1 Characteristics of Arctic tundra and polar desert ecosystems
 1.2 Raison d’être for the chapter
 1.3 Rationale for the structure of the chapter
 1.4 Approaches used for the assessment: strengths, limitations and uncertainties

2. Past changes in Arctic terrestrial ecosystems, climate and UV radiation
 2.1 Introduction
 2.2 Late-Quaternary environmental history in the Arctic
 2.3 Late-Quaternary history of Arctic biota
 2.4 Late-Quaternary ecological history in the Arctic
 2.5 Late-Quaternary history of humans in the Arctic
 2.6 Future change in the context of Late-Quaternary changes
 Summary: Late-Quaternary history of Arctic biota and environments and implications for future responses to rapid climate changes

3. Species Responses to changes in climate and UV-B in the Arctic
 3.1 Background
 3.2 Implications of current species distributions for future biotic change
 3.2.1 Plants
 3.2.2 Animals
 3.2.3 Microorganisms
 Summary: Implications of current species distributions for future biotic change
 3.3 General characteristics of the Arctic’s species and their adaptations in the context of changes in climate and UV-B radiation
 3.3.1 Plants
 3.3.2 Animals
 3.3.3 Micro-organisms
 3.3.4 Algae
 Summary: General characteristics of Arctic micro-organisms in relation to climate and implications for their responses to climate change
3.4 Phenotypic responses of Arctic species to changes in climate and UV-B radiation
 3.4.1 Specific responses of plants to changes in climate and UV-B radiation
 Summary: responses at the plant species level to changes in climate and UV-B radiation
 3.4.2 Specific responses of animals
 3.4.3 Specific responses of micro-organisms to changes in climate and UV-B radiation
 Summary: Responses of micro-organisms to changes in climate and UV-B radiation

3.5 Genetic responses of species to changes in climate and UV-B radiation
 3.5.1 Plants
 3.5.2 Animals
 3.5.3 Micro-organisms
 Summary: Genetic responses of species to changes in climate and UV-B radiation

3.6 Recent and expected changes in species distributions and potential ranges
 3.6.1 Recent changes
 3.6.2 Expected future changes in species distributions
 Summary: Recent and expected changes in species distributions and potential ranges

4. Effects of changes in climate and UV on structure and function of Arctic ecosystems in the short- and long-term perspectives
 4.1 Effects of changes in climate and UV on ecosystem structure
 4.1.1 Local and latitudinal variation in ecosystem structure
 4.1.2 Response of ecosystem structure to experimental manipulations
 4.1.3 Recent decadal changes in ecosystem structure within permanent plots
 4.1.4 Trophic Interactions
 Summary: Effects of changes in climate and UV on the structure of Arctic ecosystems
 4.2 Ecosystem function
 4.2.1 Biogeochemical cycling: dynamics of carbon (C) and nutrients
 4.2.2 Soil processes and controls over trace gas exchanges
 4.2.3 Water and energy balance
 Summary: Effects of changes in climate and UV-B on ecosystem function

5. Effects of changes in climate on landscape and regional processes and feedbacks to the climate system
 5.1 Impacts of recent and current climate on carbon flux
 5.1.1 Recent changes in CO₂ flux
 5.1.2 Current circum-Arctic CH₄ fluxes
 5.1.3 Relative contribution of CH₄ and CO₂ to carbon budget and their importance
 5.2 Current circum-Arctic water and energy balances
 5.3 Large scale processes affecting future balances of carbon, water and energy
 5.3.1 Permafrost degradation
 5.3.2 Changes in circum-polar vegetation zones
 5.4 Projections of future balances of carbon, water and energy exchange
 5.4.1 Projected changes in carbon balance
 5.4.2 Projected changes in exchanges of energy and water
Summary:
1. Will the Arctic become a source of carbon, or remain a sink?
2. What will be the outcome of the negative and positive feedbacks to the climate system from terrestrial ecosystems?

6. Uncertainties and recommendations
6.1 Uncertainties
 6.1.1 Uncertainties due to methodologies and conceptual frameworks
 6.1.2 Uncertainties due to surprises
 6.1.3 Uncertainties due to lack of validation of models
 6.1.4 Uncertainties due to the use of ACIA scenarios
6.2 Recommendations to reduce uncertainties
 6.2.1 Thematic recommendations and justification
 6.2.2 Recommendations for future approaches to research and monitoring
 6.2.3 Funding requirements

7. Synthesis: Scenarios of expected changes in the four ACIA subregions for 2020, 2050 and 2080
 7.1 Environmental characteristics
 7.2 Vegetation zones and carbon balance
 7.3 Biodiversity

Acknowledgements

8. References
Chapter 7: Impacts of Climate Change and UV Radiation on Freshwater Arctic Ecosystems

Lead Authors: F. Wrona, T. Prowse, J. Reist

Consulting Authors: D. Lean, S. Perin, H. Lehtonen, R. Tallman, B. Dempson, R. Pienitz, J. Smol, R. Clark

Research Assistants: T. Carmichael, L. Lévesque

1. General Introduction
 1.1 Challenges in Projecting Freshwater Hydrologic and Ecosystem Responses
 1.2 ‘Quantifying’ Impacts Using a “Weight of Evidence” Approach
 1.3 Chapter Structure

2. Freshwater Ecosystems in the Arctic
 2.1 General Features of the Arctic Relevant to Freshwater Ecosystems
 2.2 Freshwater Inputs into Arctic Aquatic Ecosystems
 2.3 Structure and Function of Arctic Freshwater Ecosystems
 2.3.1 Rivers and Streams, Deltas and Estuaries
 2.3.2 Lakes and Ponds, Wetlands
 2.4 Regional Description of Freshwater Ecosystems
 2.4.1 Region I – Arctic Europe, E. Greenland, Russian North, N. Atlantic
 Box 7.1. Productivity of Northern Russian Lakes
 2.4.2 Region II – Siberia
 Box 7.2. Siberia’s Wetlands
 2.4.3 Region III – Chukotka, Bering Sea, Alaska, W. Arctic Canada
 Box 7.3. The Mackenzie River System
 2.4.4 Region IV – NE Canada, Labrador Sea, Davis Strait, W. Greenland
 Box 7.4. Northern Québec – Labrador: Long-term Climate Stability

3. Historical Changes in Freshwater Ecosystems
 3.1 Ecosystem Memory of Climate Change
 3.1.1 Lentic Archives
 3.1.2 Lotic Archives
 3.1.3 Terrestrial and Wetland Archives
 3.2 The Backdrop to Recent Warming: Climate Change and Freshwater Ecosystem Response during the Holocene
 3.2.1 Region I Arctic Europe, Eastern Greenland, Russian North, N. Atlantic
 3.2.2 Region II Siberia
 3.2.3 Region III Chukotka, Bering Sea, Alaska, W. Arctic Canada
 3.2.4 Region IV NE Canada, Labrador Sea, Davis Strait, West Greenland
 3.3 Climate Warming and Freshwater-Ecosystem Response During the Industrial Period

4. Climate Change Effects
 4.1 Broad-Scale Effects on Freshwater Systems
Box 7.5. Thresholds of Response

4.2 Effects on Hydro-Ecology of Contributing Basins

Box 7.6. Toolik Lake, Alaska

4.3 Effects on General Hydro-Ecology
 4.3.1 Streams and Rivers, Deltas and Estuaries
 4.3.2 Lakes, Ponds and Wetlands

Box 7.7. Lake Saanajärvi, Finnish Lapland

4.4 Changes in Aquatic Biota, Ecosystem Structure and Function
 4.4.1 Effects on Biodiversity and Species Richness
 4.4.2 Effects on Biological Communities
 4.4.3 Effects on Food Web Structure and Dynamics
 4.4.4 Effects on Primary and Secondary Production

Box 7.8. North-East Greenland

4.4.5 Effects on Wetland Carbon

5. Climate Change Effects on Arctic Fishes, Fisheries and Aquatic Wildlife

5.1 Understanding and Projecting Responses of Arctic Fishes
 5.1.1 Fish and Climate Parameters
 Box 7.9. Freshwater and Diadromous Fishes of the Arctic
 5.1.2 Ecosystems, Habitat and Fishes – Climate Change in the Context of
 Multiple Stressors
 5.1.3 Some General Effects of Climate Induced Changes on Physical Habitat
 5.1.4 Issues at the Level of Fish Populations

5.2 Climate Change Effects on Arctic Freshwater Fish Populations

5.3 General Effects of Climate Change on Arctic Anadromous Fish

Box 7.11. Effects of Changes on Life-History and Population
 Characteristics of Arctic Charr (Salvelinus alpinus L.)

Box 7.12. Projecting the Effects of Climate Change on a Stock-specific Basis
of the Atlantic Salmon - (Salmo salar L.)

5.4 Impacts on Fisheries for Arctic Freshwater and Anadromous Species
 5.4.1 Nature of Fisheries in Arctic Freshwaters
 5.4.2 Impacts on the Quantity and Availability of Fish
 5.4.3 Impacts on Quality of Fish
 5.4.4 Impacts on Access and Success of Fisheries
 5.4.5 Impacts on Specific Fishery Sectors: Commercial, Domestic, Sport
 5.4.6 Impacts on Aquaculture

5.5 Impacts on Aquatic Birds and Mammals

6. UV Impacts on Freshwater Ecosystems

6.1 Introduction
 Box 7.13. Changing Snow and Ice Cover – Implications for UV Exposure
 Box 7.14. CDOM: The Natural UV-Sunscreen in Arctic Lakes and Rivers

6.3 UV Impacts on Aquatic Biota and Ecosystems

Box 7.15. UV Protection and Recovery Mechanisms in Arctic Freshwaters

6.4 Impacts on Physical/Chemical Attributes
 6.4.1 Rivers and Streams
 6.4.2 Lakes, Ponds and Wetlands

6.5 Impacts on Biotic Attributes
6.5.1 Rivers and Streams
6.5.2 Lakes, Ponds and Wetlands
 Box 7.16. UV effects from molecules to ecosystems

7. Global Change-Contaminants
 7.1 Contaminant Pathways and Arctic Aquatic Ecosystems
 7.2 Persistent Organic Pollutants in Arctic Catchments
 7.3 Mercury in Arctic Catchments
 Box 7.17. Biological Contaminant Effects - Temperature Induced Metal Accumulation and Stress Responses in Fish from Canadian Arctic Lakes

8. Synthesis/Conclusions/Knowledge Gaps
 8.1 Summary of Key Findings
 8.2 Regional Issues and Vulnerabilities
 8.3 Knowledge Gaps
 8.4 Science/Policy Implications and Recommendations

9. References
Chapter 8: Marine systems

Lead Author: Harald Loeng

Contributing Authors: Keith Brander, Eddy Carmack, Stanislav Denisenko, Ken Drinkwater, Bogi Hansen, Kit Kovacs, Pat Livingston, Fiona McLaughlin and Egil Sakshaug

Consulting Authors: Howard Browman, Tore Furevik, Jacqueline M. Grebmeier, Eystein Jansen, Steingrimur Jónsson, Svend-Åge Malmberg and Geir Ottersen

8.1 Introduction
8.2 Physical oceanographic conditions
 8.2.1 General description of area
 8.2.1.1 Arctic Ocean
 8.2.1.1.1 Arctic Basins
 8.2.1.1.2 Arctic Shelf Seas
 8.2.1.1.2.1 Barents Sea and White Sea
 8.2.1.1.2.2 Kara Sea, Laptev Sea and the East Siberian Sea
 8.2.1.1.2.3 Chukchi Sea
 8.2.1.1.2.4 Beaufort Sea
 8.2.1.1.3 Canadian Archipelago
 8.2.1.2 The Southern Marine Arctic
 8.2.1.2.1 Bering Sea
 8.2.1.2.2 The Nordic Seas
 8.2.1.2.2.1 Norwegian Sea
 8.2.1.2.2.2 Greenland Sea
 8.2.1.2.2.3 Iceland Sea
 8.2.1.2.3 The Irminger Sea
 8.2.1.2.4 The Labrador Sea
 8.2.1.2.5 Baffin Bay
 8.2.1.2.6 Canadian Inland Seas
 8.2.2 Sea ice
 8.2.2.1 Seasonal cycle
 8.2.2.2 Fast ice and polynyas
 8.2.2.3 Recent trends in sea ice distribution and thickness
 8.2.2.4 Length of melt season
 8.2.2.5 Sea-ice drift
 8.2.3 Variability of means and extremes
 8.2.3.1 Seasonal variability
 8.2.3.2 Interannual to decadal variability
 8.2.3.2.1 Arctic Ocean
 8.2.3.2.2 Subpolar Gyre
 8.2.3.3 Deep convection and the thermohaline circulation
 8.2.3.4 Canadian Inland Seas
 8.2.3.5 Bering Sea
 8.2.4 Processes of climatic importance
8.2.4.1 Thermohaline circulation
8.2.4.1.1 Thermohaline ventilation
8.2.4.1.1.1 Cooling and brine rejection
8.2.4.1.1.2 Vertical transfer of water and density
8.2.4.1.2 Horizontal water exchange
8.2.4.1.2.1 Overflow
8.2.4.1.2.2 Atlantic inflow
8.2.4.1.2.3 Budgets
8.2.4.1.2.4 Driving forces
8.2.4.2 Freshwater and entrainment
8.2.4.3 Mixed layer depth
8.2.4.4 Wind transport
8.2.4.5 What drives the Atlantic inflow to the Arctic Mediterranean?
8.2.5 The carbon cycle and climate change
8.2.6 Anticipated changes in the physical conditions
8.2.6.1 Atmospheric circulation
8.2.6.2 Sea ice conditions
8.2.6.2.1 Changes in areal ice extent
8.2.6.2.2 Changes in the seasonal ice zone
8.2.6.3 Regional changes in ocean circulation and water properties
8.2.6.3.1 Changes in the Arctic Ocean
8.2.6.3.2 Changes in the Nordic and Barents Seas
8.2.6.3.3 The Perimeter Seas of the North American Arctic
8.2.6.4 Ocean fronts
8.2.6.5 Possibility and consequences of altered thermohaline circulation
8.3 Biota
8.3.1 General description of the community
8.3.1.1 Phytoplankton, microalgae and macroalgae
8.3.1.1.1 Microheterotrophs (non-photosynthetic micro-organisms)
8.3.1.2 Zooplankton
8.3.1.3 Benthos
8.3.1.4 Fish
8.3.1.4.1 Capelin
8.3.1.4.2 Herring
8.3.1.4.3 Arctic cod
8.3.1.4.4 Cod
8.3.1.4.5 Walleye Pollock
8.3.1.4.6 Redfish
8.3.1.4.7 Greenland Halibut
8.3.1.4.8 Other flatfish
8.3.1.5 Marine mammals and sea birds
8.3.1.5.1 Marine mammals
8.3.1.5.1.1 Polar bears
8.3.1.5.1.2 Walrus
8.3.1.5.1.3 Seals
8.3.1.5.1.4 Whales
8.3.1.5.2 Seabirds
8.3.2 *Influence of physical factors on biota*

8.3.2.1 Primary production: Limitation, control, impact of physical and chemical factors
 8.3.2.1.1 Distribution of primary production
8.3.2.2 Secondary production
 8.3.2.2.1 Match vs mismatch
8.3.2.3 Climate impact on fish
 8.3.2.3.1 Temperature impact on reproduction, recruitment and growth
 8.3.2.3.2 Climate impact on fish distribution and migration
8.3.2.4 Physical conditions of importance for marine mammals and sea birds

8.3.3 *Past variability – interannual to decadal*

8.3.3.1 Plankton
8.3.3.2 Benthos
8.3.3.3 Fish
 8.3.3.3.1 The warming period of 1920s
 8.3.3.3.2 Climate effects on the Barents Sea
 8.3.3.3.3 Norwegian spring spawning herring
 8.3.3.3.4 Temperature mediated habit changes in Canadian capelin
 8.3.3.3.5 Historical climate and Bering Sea fish
8.3.3.4 Historical climate influences on sea mammals and sea birds

8.3.4 *Future changes – processes and impacts on biota*

8.3.4.1 Impact of Arctic warming on phytoplankton
8.3.4.2 Impact on zooplankton production: Grazing vs. sedimentation, fish vs. zooplankton
8.3.4.3 Benthos
8.3.4.4 Fish production
8.3.4.5 Climate change impacts on marine mammals and sea birds
 8.3.4.5.1 Marine mammals
 8.3.4.5.2 Sea birds

8.4 *Effects of changes in UV*

8.4.1 Ozone layer depletion and solar ultraviolet radiation
8.4.2 UV-B optics in marine waters
8.4.3 UV-B impacts on marine organisms and ecosystems
 8.4.3.1 Direct effects of UV exposure
 8.4.3.2 Indirect effects
8.4.4 Ecological context
8.4.5 Summary and closing perspective

8.5 *Conclusions and key findings*

8.6 *Knowledge gaps and research needs*

8.6.1 Gaps in knowledge
8.6.2 Suggested research actions

8.7 *References*
Chapter 9: The Changing Arctic: Indigenous Perspectives

Lead Authors: Henry P. Huntington and Shari Fox

Contributing Authors: Igor Krupnik and Fikret Berkes

Case Study Authors:
Kotzebue: Alex Whiting
Nunavut: Shari Fox
Sapmi: Tero Mustonen, Mika Nieminen, and Hanna Eklund
Kola: Tero Mustonen, Sergey Zavalko, Jyrki Terva, and Alexey Cherenkov
Denendeh: Chris Paci, Shirley Tsetta, Chief Sam Gargon, Chief Roy Fabian, Chief Jerry Paulette, Vice-Chief Michele Cazon, Sub-Chief Diane Giroux, Pete King, Maurice Boucher, Louie Able, Jean Norin, Agatha Laboucan, Philip Cheezie, Joseph Poitras, Flora Abraham, Bella T’selie, Jim Pierrot, Paul Cotchlily, George Lafferty, James Rabesca, Eddie Camille, John Edwards, John Carmicheal, Woody Elias, Alison de Palham, Laura Pitkanen, and Leo Norwegian
The Yukon Territory: Cindy Dickson
Qaanaaq, Greenland: Uusaqqak Qujaukitsoq and Nuka Møller
Climate Change and the Saami: Elina Helander
The Aleutian and Pribilof Islands Region, Alaska: Michael Zacharof, Greg McGlashan, Michael Brubaker, and Victoria Gofman

Consulting Authors
Anne Henshaw, Terry Fenge, Scot Nickels, and Simon Wilson

9.0 Introduction
9.1 The knowledge of Arctic peoples
Box 9*1 Indigenous observations of UV change
9.2 Indigenous observations of climate change
Box 9*2 Place names as indicators of environmental change
Box 9*3 Archeology and past changes in the Arctic climate
9.3 Case studies
9.3.1 Northwest Alaska: the Qikiktagrugmiut
9.3.2 Nunavut
9.3.3 Sapmi: the communities of Purnumukka, Ochejohka, and Nuorgam
9.3.4 Kola: the Saami community of Lovozero
9.3.5 Denendeh: the Dene Nation’s Denendeh Environmental Working Group
9.3.6 The Yukon Territory: the Council of Yukon First Nations
9.3.7 Qaanaaq, Greenland
9.3.8 Climate change and the Saami
9.3.9 The Aleutian and Pribilof Islands region, Alaska
9.4 Indigenous perspectives and resilience
Box 9*4 Political relations, self-determination, and adaptability
9.5 Further research needs
9.6 Summary
9.7 References
Chapter 10: Management and Conservation of Wildlife in a Changing Arctic

Lead Author: David R. Klein

Contribution Authors: Leonid M. Baskin, Lydmila S. Bogoslovskaya, Kjell Danell, Anne Gunn, David B. Irons, Gary P. Kofinas, Kit M. Kovacs, Margarita Magomedova, Rosa H. Meehan, Don Russell, Patrick Valkenburg

1. Chapter objectives
 1.1 Introduction
 1.2 Conservation and management of wildlife in the Arctic
 (Text box) The Inuit Circumpolar Conference (ICC)
 1.3 The role of protected areas in wildlife conservation and management
 (Text box) Balancing Nature Conservation and Industrial Development in Canada
 1.4 Change in human relationships to wildlife and managing human uses of wildlife in a changing Arctic

2. Climate change and terrestrial wildlife management
 2.1 Regional trends in wildlife management and its status in the Russian Arctic and Sub-Arctic
 (Text box) A Case Study: River-crossings as focal points for wild reindeer management in the Russian Arctic
 2.2 The Canadian North
 2.2.1 Historical conditions and present status
 2.2.2 Present wildlife management arrangements and co-management
 (Text box) A Case Study: Co-management of the Porcupine Caribou Herd, towards sustainability under conditions of climate change
 2.2.3 Hunting as a threat to wildlife conservation
 2.2.4 Additional threats
 2.2.5 The “Profile of Herds” concept
 2.3 The Fennoscandian North
 2.3.1 Management and conservation of wildlife under change in the Fennoscandian Arctic
 2.3.2 Hunting systems
 2.3.3 Monitoring systems
 2.3.4 Flexibility of hunting systems under climate change
 2.3.5 Recommendations
 2.4 Institutional structures for management and conservation of terrestrial wildlife in the Alaskan Arctic
 2.4.1 Minimizing impacts of industrial development on wildlife and their habitats influenced by climate change in Arctic Alaska

3. Management and conservation of marine mammals and seabirds in the Arctic
 3.1 Management and conservation of sea mammals and seabirds in Russia
 3.2 Management and conservation of sea mammals and seabirds in the Canadian Arctic
3.3 Management and conservation of sea mammals and seabirds in the Fennoscandian North
3.4 Management and conservation of sea mammals and seabirds in the Alaskan Arctic
3.5 Future strategies for management and conservation of marine wildlife
 3.5.1 North Pacific, Bering, Chukchi, and Beaufort seas
 (Text box) The role of regional land use planning in wildlife management and conservation in the Arctic

4. Synthesis and recommendations
 4.1 User participation in wildlife management systems under climate change
 4.2 A regional land use perspective needed for effective management and conservation of wildlife in a changing Arctic
 4.3 Shared responsibility for management and conservation of wildlife in the Arctic requires involvement, cooperation, and collaboration among all interest groups
 (Text box) Balancing nature conservation and industrial development in Canada

5. Summary
 5.1 Summarizing important needs for effective wildlife management and associated conservation in a changing Arctic:

6. References

Tables
Chapter 11: Hunting, Herding, Fishing and Gathering

Lead Author: Mark Nuttall

Contributing Authors: Fikret Berkes, George Wenzel, Bruce Forbes and Gary Kofinas

Introduction and Scope of the Chapter

1. Contemporary Uses of Living Marine and Terrestrial Resources
 1.1 Indigenous Peoples, Animals and Climate
 1.2 Interdependent Economies
 1.3 Renewable Resource Harvesting and Global Processes
 1.4 Renewable Resource Harvesting and Climate Change: Risk and Access to Food Resources
 1.5 Climate Change, Indigenous Peoples and Flexibility

2. Understanding Climate Change Impacts Through Case Studies
 2.1 Marine Mammals, Coastal Communities and Life on the Ice
 2.1.1 Canadian Western Arctic: the Inuvialuit of Sachs Harbour
 2.1.2 Climate Change and Canadian Inuit in Nunavut: the traditional economy, adaptation and ecological instability
 2.2 Caribou, Reindeer and Climate Change
 2.2.1 The Yamal Nenets of Northwest Siberia: adaptive reindeer management
 2.2.2 Understanding the implications of climate change for indigenous caribou systems of North America
 2.3 Climate Change Issues and the Traditional Lifestyle of the Indigenous Peoples of the Russian North (IPRN)

3. Conclusions and Research Needs
Chapter 12. Fisheries and Aquaculture

Lead Authors: Hjálmar Vilhálmsson and Alf Håkon Hoel

Contributing Authors: Sveinn Agnarsson, Ragnar Arnason, James E. Carscadden, David Fluharty, Carsten Hvingel, Jakob Jakobsson, George Lilly, Odd Nakken, Vladimir Radchenko, Susanne Ramstad, William Schrank, Niels Vestergaard, and Thomas Wilderbuer

1. Introduction
 - Biological and model uncertainties/certainties
 - Societal uncertainties
 - Global framework
 - Chapter organization

2. The Northeast Atlantic
 2.1 Introduction: the area and key figures
 2.2 Ecosystem essentials
 2.3 Fish stocks and fisheries
 - Overview
 - Arctic fish species
 - Other important fisheries in the region
 - Marine mammals
 2.4 Past climate variations and their impact on commercial stocks
 Text-box 12.2.1: The fall and rise of the Norwegian Spring Spawning Herring
 2.5 Possible impacts of climate variations on fish stocks
 2.6 Economic and social importance - The economic value of the fisheries in the Northeast Atlantic
 - Introduction
 - Capture-fisheries
 - The fishing fleet and fishers
 - The land side of the fishing industry
 - Aquaculture
 - Employment in the fisheries sector
 - Markets
 - Fisheries communities
 - The management regime
 2.7 Economic and social impacts of climate change on fisheries in the Northeast Atlantic and ability to cope with change
 - Resource management
 - The fishing fleet
 - Aquaculture
 - The processing industry, markets and societies
 References

3. Iceland-Greenland
 3.1 Ecosystem essentials
 - Hydrography and bioproduction
 - Commercial species of fish and invertebrates
Marine mammals
Species interactions

3.2 Fisheries and aquaculture
 Iceland
 Greenland

3.3 Historic climate variations and related changes of marine ecology and commercial stocks

3.4 Possible Future Impacts of Climate Change Scenarios

3.5 The fishing industry and economic fluctuations: Lessons from history
 Iceland
 Greenland

3.6 The economic and social role of the fisheries
 Iceland
 Greenland

3.7 Economic and social impacts of global warming: Possible scenarios
 Iceland
 Quantitative evidence
 Impact on GDP: Scenarios
 The optimistic scenario
 The pessimistic scenario
 The dramatic scenario
 Social and political impacts
 Impacts on fish markets
 Discussion
 Greenland
 Quantitative evidence
 Impact on GDP: Scenarios
 The optimistic scenario
 The moderate scenario
 The dramatic scenario
 Social and political impacts
 Discussion

3.8 The ability to cope with sudden changes

3.9 References

4. Northeastern Canada

4.1 Introduction

4.2 Ecosystem essentials

4.3 Fish Stocks and Fisheries
 Atlantic cod (Gadus morhua)
 Greenland halibut (Reinhardtius hippoglossoides)
 Capelin (Mallotus villosus)
 Herring (Clupea harengus)
 Arctic (polar) cod (Boreogadus saida)
 Northern shrimp (Pandalus borealis)
 Snow crab (Chionoecetes opilio)
 Marine mammals

4.4 Factors affecting biology
Atlantic cod (Gadus morhua)
Greenland halibut (Reinhardtius hippoglossoides)
Capelin (Mallotus villosus)
Herring (Clupea harengus)
Arctic (polar) cod (Boreogadus saida)
Northern shrimp (Pandalus borealis)
Snow crab (Chionoecetes opilio)
Marine mammals
Aquaculture

4.5 Impacts of global warming on fish stocks: Possible scenarios
4.6 The economic and social role of fisheries in Newfoundland
4.7 Past variations in the fishing industry and their economic and social impacts
4.8 Economic and social impacts of global warming: Possible scenarios
4.9 Impacts of global warming on aquaculture
4.10 The ability to cope with climate change

References

5. Bering Sea
5.1 Introduction
5.2 Ecosystem Essentials
5.3 Fish Stocks and Fisheries
 Capelin
 Greenland halibut
 Pandalid shrimp
 Polar/Arctic cod
 Crabs
 Walleye Pollock
 Pacific cod
 Yellowfin sole
 Marine Mammals
 Salmon
5.4 Past climatic variations and their impact on ecosystems and commercial stocks
5.5 Impacts of global warming on fish stocks: Possible scenarios
5.6 Socio-Economic Role of Fisheries
5.7 Past Variation in Bering Sea Fisheries and the Socio-Economic Impacts
5.8 Socio-economic impacts of global warming on fish stocks: Possible scenarios

References

6. Synthesis and Key Findings

7. Research Recommendations
Chaper 13: Forests, Land Management and Agriculture

Lead Author: Glenn Patrick Juday

Contributing Authors: Valerie Barber, Eugene Vaganov, Scott Rupp, Steve Sparrow, Paul Duffy

1. Overview of the Chapter
 1.1 Relationship to ACIA Study Area
 1.2 Plan of the Chapter

2. Importance of the Boreal Forest and it relationship to climate
 2.1 Global importance of the Boreal Forest
 2.2 Importance of the Boreal Forest to the Arctic
 2.3 Overall climate features of the boreal region
 2.4 Importance of climate variability in the boreal region
 2.5 Unique influences of the forest on climate in the boreal region

3. Extent of the boreal forest and land tenure and management in the boreal region
 3.1 Russia
 3.2 Canada
 3.3 USA (Alaska)
 3.4 Fennoscandia
 3.4.1 Finland
 3.4.2 Sweden
 3.4.3 Norway
 3.4.4 Iceland and Greenland

4. Use and evaluation of the scenarios
 4.1 Method of analysis
 4.2 Size and placement of grids
 4.3 Range of scenarios
 4.4 Variability and seasonality
 4.5 “Surprises” in Climate Change Effects on Forests
 4.6 Issues of B2 versus A2 Scenario

5. Agriculture
 5.1 Relationship of the global agricultural system to the Arctic region
 5.2 Agriculture in the Arctic region
 5.3 Approach to analysis of scenarios and agriculture
 5.4 Climate limitations and influences
 5.5 Growing Degree Day analysis
 5.6 Precipitation and Potential Evapotranspiration analysis
 5.7 Summary of effects on agriculture
6. Tree-rings and past climate
 6.1 Tree-ring evidence of climate change in the historical past from Siberia
 6.1.1 Long-term climatic changes in Siberian Subarctic during the last 400 years
 6.1.2 Medieval and current warming in the north-eastern Eurasia inferred from
 millennia tree-ring chronologies
 6.1.3 Climate change on the eastern Taymir during half of the Holocene
 according to the long-term tree-ring chronology
 6.2 Tree-ring evidence of climate change in the historical past from Alaska and
 Canada
 6.3 Tree-ring evidence of climate change in the historical past from north western
 Europe

7. Direct Climate Effects on Tree Growth
 7.1 The Flakaliden direct warming experiment
 7.1.1 Background to the Flakaliden direct warming experiment
 7.1.2 Heating Method and Experimental Design
 7.1.3 Key questions and hypotheses addressed by the Flakaliden experiment
 7.1.4 Results of the Flakaliden experiment to date
 7.2 Climate effects on growth of trees in a Siberian transect
 7.2.1 Climate Response Functions of Trees From the Siberian Forest-Tundra
 Zone to the Steppe
 7.2.2 Variation in climate and growth of trees on the Siberian transect
 7.3 Response of North American conifers to climate and climate change
 7.3.1 Distribution and environmental tolerance of white spruce and black spruce
 7.3.2 Response to climate and climate scenarios of white spruce in Alaska and
 Canada
 7.3.3 Response to climate and climate scenarios of black spruce in Alaska

8. Climate change and insects as a forest disturbance
 8.1 Role of forest insects in the boreal forest
 8.2 Climate and the spruce bark beetle in Alaska
 8.3 spruce bark beetle monitoring system
 8.4 Mechanism of climate control of spruce bark beetles in southcentral Alaska
 8.5 Climate and the spruce budworm in North America

9. Climate Change and Fire
 9.1 The role of fire in Subarctic and boreal forest
 9.1.1 Weather and climatic controls of fire
 9.1.2 Secondary succession following fire
 9.1.3 Components of the fire regime
 9.1.4 Ignition sources
 9.1.5 Fire history research and methodology
 9.1.6 Computer simulation models of fire and vegetation dynamics
 9.2 Regional fire regimes
 9.2.1 Fire in Russia
 9.2.1.1 Sources of Ignitions in Russia
 9.2.1.2 Trends in Area Burned in Russia
 9.2.1.3 Fire Management and Suppression Policy in Russia
 9.2.1.4 Large-Scale Fire Regimes in the Siberian Boreal Forest
9.2.1.5 Variability of average fire return intervals in stands along the Yenisei meridian

9.2.2 Fire in Canada
 9.2.2.1 Sources of Ignitions in Canada
 9.2.2.2 Trends in Area Burned in Canada
 9.2.2.3 Fire Management and Suppression Policy in Canada

9.2.3 Fire in Alaska
 9.2.3.1 Sources of Ignitions in Alaska
 9.2.3.2 Trends in Area Burned in Alaska
 9.2.3.3 Fire Management and Suppression Policy in Alaska

9.2.4 Fire in Fennoscandia

9.3 Possible climate change impacts on fire

9.4 Simulated Response of Fire Regime

9.5 Climate Impacts on fire regime in Russia

9.6 Implications of climate warming and fire for Wildlife

9.7 Implications of climate warming and fire for Humans

10. Climate Change, Carbon Uptake and Carbon Storage
 10.1 Consequences and implication of human modification of carbon cycle at the global scale
 10.2 The role of boreal forest in the global carbon cycle
 10.3 The role of disturbance in the carbon cycle of the boreal forest
 10.4 Human impact on the carbon cycle of the boreal forest
 10.4.1 Land use change and the boreal carbon cycle
 10.4.2 Nitrogen deposition, CO₂ fertilization and the boreal carbon cycle
 10.5 Computer simulation models of boreal carbon uptake and storage
 10.6 Possible climate change impacts on boreal carbon cycling

11. Climate Change and Forest Distribution
 11.1 History and examples of modern movement of treeline in Northern Eurasia
 11.1.1 Regional trends of climate and treeline in Northern Eurasia
 11.1.2 Regional trends of climate and treeline on the Yamal Peninsula
 11.1.3 Climate and treeline changes at the Polar Ural Mountains
 11.2 Relationship of forest cover type, disturbance, and climate change
 11.2.1 Disturbance impacts on forest distribution
 11.2.2 Recent trends in modeling
 11.2.3 A frame-based model of interacting vegetation, fire, and climate change
 11.2.4 Simulated response of Subarctic boreal forest

12. Ozone and UV-B effects on Forest Vegetation
 12.1 General background of the ozone and UV-B problem
 12.2 Particular nature of the ozone and UV-B problem in the Arctic
 12.3 Forest-related biological issues of ozone depletion and UV-B in the Arctic
Chapter 14: Human Health

Lead Authors: James E. Berner, Christopher Furgal

Contributing Authors: Peter Bjerregaard, Mike Bradley, Tine Curtis, Ed De Fabo, Juhani Hassi, William Keatinge, Siv Kvernmo, Simo Nayha, Hannu Rintamaki, Adrian Ryan, John Warren, Alona Yefimenko

1.0 Background and Purpose of Chapter

2.0 Health Status and Demographic Characteristics of Arctic Populations
 2.1 Population Structure
 2.2 Health Status Indicators
 - Life Expectancy
 - Birth Rate
 - Infant Mortality
 - Common Causes of Death

3.0 Potential Impact Mechanisms of Climate Change on Human Health
 3.1 Direct Mechanisms
 3.1.1 Extreme Events
 - Limits of Human Survival in Thermal Environment
 - Impact of Body Heat Balance on Human Performance
 - Acclimatization
 - Cold Injuries
 - Cold Induced Injury
 - Cold Related Diseases
 - Cardiovascular Disease
 - Cerebral Vascular Disease
 - Respiratory Diseases
 - Peripheral Circulatory Diseases
 - Cold Urticaria
 - Musculoskeletal Diseases and Symptoms
 - Cold Related Immune Effects
 3.1.2 Direct Impact of Temperature Related Stress
 - Solar UV-B and Ozone Loss
 - UV-B Radiation Health Risk in the Arctic
 - Pollutants and UV-B
 - UV-B and Immunosuppression
 - Action Spectrum (wavelength dependence)
 - Genetic Interaction with UV-B
 - Skin Cancer and UV-B
 - Skin Cancer in the Arctic, Ozone Depletion and Risk Evaluation
 - Dietary Factors and UV-B-Induced Immunosuppression
 - Non-Hodgkin’s Lymphoma and UV-B Radiation
 - UV-B and Viral Interactions
 - UV-B and Vitamin D
 - UV-B and Cataracts
The Montreal Protocol
Summary of Related Impact

3.2 Indirect Impact Mechanisms on Human Health

3.2.1 Climate-Induced Changes in Animal and Plant Populations and Impacts to Human Health
 Species Response to Climate Change
 Climate Change and Infectious Diseases
 Summary

3.2.2 Climate-Induced Changes in the Physical Environment and Potential Impacts to Human Health
 Ice, Snow and Arctic Health
 Changes in Arctic Permafrost and its Relationship to Diet & Health

3.2.3 Built Environments in the North: Infrastructure Impact
 Sanitation Infrastructure
 Water Systems
 Water Sources
 Potential Impacts to Water Sources from Climate Change
 Water Treatment
 Potential Impacts to Water Treatment Systems
 Water Distribution
 Potential Impacts to Water Distribution Systems
 Wastewater Systems
 Wastewater Collection
 Wastewater Treatment and Disposal
 Potential Impacts to Wastewater Treatment & Disposal Systems
 Solid Waste Systems
 Housing and Airports
 Summary

COMMUNITY BOX EXAMPLE – SHISHMAREF, AK

3.2.4 Acculturative Stress and Mental Health

3.2.5 Socio-economic conditions, lifestyle, culture, and health
 Social conditions and lifestyle in the Arctic
 The link between socio-economic conditions, lifestyle, culture and health
 Rapid socio-cultural and economic change and health
 Possible interactions of climate change and health in the Arctic

3.2.6 The Potential Impact of Climate and Contaminants on Human Health
 Health effects of contaminants
 Major contaminants transport pathways
 Season length
 Wind currents
 Ocean currents
 Arctic sea ice and glaciers
 River flow and Arctic lakes
 Permafrost
 Contaminants transport by wildlife
Human transport pathways
Conclusions

4.0 Historical Examples of the Impact of Climate Change on Arctic Population Health

5.0 Managing Climate and Health in Arctic Communities
 5.1 Goals of Community Indicators of Climate Change Impact on Human Health
 5.2 Characteristics of Useful Indicators
 5.3 Proposed Candidate Indicators
 Direct Impact Mechanism Indicators
 Indirect Impact Mechanism Indicators

6.0 Conclusions and Recommendations
 6.1 Recommendations

7.0 Glossary

8.0 References
Chapter 15: Infrastructure: Buildings, Support Systems and Industrial Facilities

Lead Author: Arne Instanes

Contributing Authors: Oleg Anisimov, Lawson Brigham, Douglas Goering, Branko Ladanyi, Jan Otto Larsen, Lev N. Khrustalev

Consulting Authors: Orson Smith

1. Introduction
 1.1 Outline of chapter
 1.2 The physical environment

2. Physical environment and processes related to infrastructure
 2.1 Reference to Chapter 5
 2.2 Permafrost
 2.2.1 Ground temperature variation
 2.2.2 Engineering concerns
 2.2.3 Effects of warming on frozen ground behaviour
 2.2.4 Effect of climate warming on thaw settlement and pile creep
 2.2.5 Summary
 2.3 Coastal environment
 2.4 Arctic ports and coastal transportation

3. Climate scenarios
 3.1 Reference to Chapter 5
 3.2 Environmental changes on Arctic lands
 3.2.1 Observed changes
 3.2.2 Predicted changes of permafrost
 3.2.3 Observed changes in freezing and thawing indices
 3.2.4 Predicted changes in freezing and thawing indices
 3.3 Environmental changes in the Arctic ocean
 3.3.1 Observed changes of the coastal environment
 3.3.2 Predicted changes of the coastal environment
 3.3.3 Observed changes of sea ice extent
 3.3.4 Predicted changes of sea ice extent

4. Infrastructure in the Arctic
 4.1 Introduction
 4.2 Buildings
 4.3 Road and Railway Embankments and Work Pads
 4.4 Transportation Routes on land
 4.5 Off-Road Transportation Routes
 4.6 Offshore transportation routes
 4.7 Damage to infrastructure
 4.8 Reduction of energy consumption for heating

5. Slide activity and impacts of natural hazards
 5.1 Introduction
 5.2 Infrastructures and natural hazards
 5.3 Weather impact on slope stability and failure
5.4 Climate change and avalanche/slide activity
5.5 Conclusions

6. **Engineering Design**
 6.1 Design approaches for infrastructure on permafrost
 6.2 Design thawing and freezing indices
 6.3 Design for a changing climate
 6.4 Coastal areas
 6.5 Summary and conclusions

7. **Gaps in Knowledge and Research Needs**
8. **Summary**
9. **References**
Chapter 16: Assessing Vulnerabilities: A Strategy for the Arctic

Lead Authors: James J. McCarthy and Marybeth Long Martello

Contributing Authors: Robert Corell, Noelle Eckley, Shari Fox, Grete Hovelsrud-Broda, Svein Mathiesen, Colin Polsky, Henrik Selin and Nicholas Tyler

WHY ASSESS VULNERABILITIES IN THE ARCTIC?
A FRAMEWORK FOR ANALYZING VULNERABILITY

CHANGES AND STRESSES IN THE ARCTIC
Climate Change
UV Radiation
Pollution
Trends in Human and Societal Conditions

INTERACTIONS OF STRESSES

ADAPTATIONS

METHODS AND MODELS FOR VULNERABILITY ANALYSIS
Climate Scenarios and Downscaling to Specific Locales
Measurement and Methodology for Pollutant Analysis
Analysis of Human And Societal Trends
Sources of Local Knowledge and Stakeholders as Participants

UNDERSTANDING VULNERABILITIES THROUGH CASE STUDIES
CASE STUDY: MARINE LIVING RESOURCE USE IN THE DISKO BAY REGION
The Human-Environment System: Marine Ecosystems and a Cash/Subsistence Economy for Marine Resources
Potential Stresses and other Influences on the Disko Bay Region
Adaptive and Coping Responses to Interacting Stresses
Insights from the Disko Bay Marine Living Resource Use Case Study

REINDEER NOMADISM IN FINNMARK
World Reindeer Herding
Reindeer Herding in Finnmark
Conceptual Framework for a Vulnerability Study in Finnmark
Climate Change and Climate Variability in Finnmark: Projections and Potential Effects
Coping with Climate Variability and Change
Constraints on Coping: Institutions and Governance
Insights from the Reindeer Nomadism Vulnerability Case Study

INSIGHTS GAINED AND IMPLICATIONS FOR FUTURE VULNERABILITY ASSESSMENTS
Climate
Pollution
Trends Human and Societal Conditions
Steps Ahead

APPENDIX A: ACRONYMS
APPENDIX B: TABLE
APPENDIX C: TEXT FOR BOXES
REFERENCES
Chapter 17: Synthesis of the Arctic Climate Impact Assessment

Lead Author: Gunter Weller

Contributing Authors: E. Bush, T. Callaghan, R. Corell, C. Furgal, A. H. Hoel, H. Huntington, D. Klein, H. Loeng, M. Martello, M. MacCracken, J. Walsh

17.0 Introduction
17.1 Changes in Climate and UV
 17.1.1 Observed Climate Change
 17.1.2 Indigenous Observations of Recent Climate Changes
 17.1.3 Future Climate Projections
 17.1.4 Ozone and UV Radiation Change
17.2 Arctic-Wide Impacts
 17.2.1 Uncertainties in Impact Assessments
 17.2.2 Impacts on the Environment
 17.2.3 Impacts on People’s Lives
 17.2.4 Impacts on the Economy
17.3 Impacts by Region
 17.3.1 Arctic Europe, East Greenland, Russian North, North Atlantic
 17.3.2 Siberia
 17.3.3 Chukotka, Bering Sea, Alaska, Northwest Canada
 17.3.4 Northeast Canada, Labrador Sea, Davis Strait, West Greenland
17.4 Improving Future Assessments
17.5 Conclusion
17.6 References